
The Rise of 
Malicious NPM 

Packages:
How Safe Is Your Codebase?

This document explores the escalating threat of malicious packages within the 
NPM ecosystem, detailing attacker tactics, real-world case studies, and 

comprehensive strategies to protect your software supply chain.

https://gamma.app/?utm_source=made-with-gamma


Introduction: The Hidden Threat in 
Your Dependencies
NPM, the Node Package Manager, stands as the largest JavaScript package registry globally, serving as 
the foundational pillar for millions of projects and powering modern web development. Its sheer scale, 
however, presents a significant attack surface. In recent years, a troubling trend has emerged: a surge in 
malicious packages infiltrating this ecosystem, posing a substantial and often unseen threat to 
developers, organizations, and ultimately, end-users.

This document aims to shed light on this escalating cybersecurity challenge. We will explore the 
sophisticated methods employed by threat actors to compromise software supply chains, the far-
reaching impact of such breaches, and, most importantly, provide actionable insights and defensive 
strategies to safeguard your codebase against these insidious attacks.

Ubiquitous Reach
NPM's widespread 
adoption makes it a prime 
target for attackers.

Evolving Threats
Malicious packages are 
becoming increasingly 
sophisticated, leveraging 
advanced evasion 
techniques.

Critical Impact
Compromised packages 
can lead to data breaches, 
intellectual property loss, 
and operational 
disruption.

https://gamma.app/?utm_source=made-with-gamma


Anatomy of a Malicious NPM 
Package: Techniques and Tactics
Attackers leverage various techniques to embed and execute malicious code within NPM packages. A 
primary vector is the exploitation of install scripts (e.g., `preinstall`, `postinstall`). These scripts, 
defined in `package.json`, are automatically executed by NPM during package installation, often 
without explicit user interaction, providing a perfect opportunity for attackers to run arbitrary code.

Common malicious behaviors observed in these packages include:

Credential Theft: Harvesting API keys, cloud credentials, database passwords, and other sensitive 
information from the developer's environment.

System Fingerprinting: Collecting detailed information about the compromised system, including 
operating system details, installed software, and network configurations.

Keylogging: Recording keystrokes to capture sensitive data like passwords, private keys, or 
confidential communications.

Cryptocurrency Mining: Illegitimately utilizing the victim's CPU or GPU resources for mining 
cryptocurrencies, impacting system performance.

Backdoors & Persistence: Establishing covert communication channels or modifying system files to 
ensure continued access even after the initial infection is addressed.

More sophisticated multi-stage payloads demonstrate advanced evasion techniques, such as:

DLL Side-loading: Abusing legitimate Windows DLLs to load malicious code.

Encrypted Communications: Using encrypted channels (e.g., DNS over HTTPS, WebSocket) to 
communicate with command-and-control (C2) servers, making detection more difficult.

Obfuscation and Anti-analysis: Employing code obfuscation, anti-VM, and anti-debugging 
techniques to hinder analysis by security researchers.

Example: The "termncolor" package incident illustrates a stealthy approach. This package used a 
cleverly disguised dependency named "colorinal" to deploy malware. The malware then leveraged 
an unusual C2 channel 3 communicating via the Zulip chat platform 3 to achieve both stealth and 
persistence, effectively blending in with legitimate network traffic.

https://gamma.app/?utm_source=made-with-gamma


Case Study: The Ethers-Provider2 
Incident 4 A Sophisticated Supply 
Chain Attack
In March 2025, the cybersecurity community was alerted to a highly sophisticated software supply chain 
attack involving the malicious <ethers-provider2= package. This incident serves as a stark reminder of 
the evolving threat landscape and the inherent risks of dependency management.

The "ethers-provider2" package was not a standalone threat; it was specifically engineered to target and 
inject malicious code into the widely used and legitimate "ethers" package, a critical component in the 
Ethereum ecosystem. The attacker leveraged a technique known as dependency confusion or 
typosquatting, where a similarly named malicious package is published to trick developers into 
installing it instead of the authentic one.

Key characteristics of this attack included:

Targeted Code Patching: Upon installation, the malware intelligently identified legitimate files 
within the "ethers" package and patched them with its own malicious logic. This method allowed 
the attacker to directly modify core functionalities without raising immediate suspicion.

Reverse Shell Creation: The injected code was designed to create a reverse shell. This type of 
connection allows an attacker to gain remote command-line access to the compromised system, 
effectively giving them control over the victim's environment.

Advanced Persistence: A particularly concerning aspect was the malware's ability to maintain 
persistence. Even if the "ethers-provider2" package was removed or uninstalled, the malicious 
patches remained within the legitimate "ethers" files, ensuring continued access for the attacker. 
This made remediation significantly more challenging, requiring careful verification and potential 
reinstallation of the authentic package.

Evasion Techniques: The attackers employed various evasion techniques to bypass static analysis 
tools and avoid detection by traditional security measures, showcasing a high level of technical 
proficiency.

The potential impact of this attack was amplified by the immense popularity of the legitimate "ethers" 
package, which boasts over 350 million downloads. This incident underscored the critical importance 
of verifying package authenticity and the dangers of local package infection, where even a seemingly 
minor dependency can compromise an entire development environment.

https://gamma.app/?utm_source=made-with-gamma


Recent Campaigns Targeting 
Developers and Enterprises
The threat of malicious NPM packages is not theoretical; it's a persistent and evolving reality. 
Throughout 2025, security researchers observed a significant increase in sophisticated campaigns 
specifically designed to target developers and enterprises through compromised NPM dependencies.

Attackers frequently disguise their malicious intent by uploading new NPM packages that masquerade 
as benign utilities, performance enhancements, or essential development tools. These packages often 
accumulate thousands of downloads rapidly, capitalizing on developers' trust and the fast-paced nature 
of modern development.

The primary objectives of these campaigns typically involve:

Sensitive Data Exfiltration: Once installed, these malicious packages are programmed to steal 
valuable data from the compromised development environment. This can include highly sensitive 
information such as:

iCloud Keychain data: Accessing stored passwords and personal information.

Browser data: Extracting browsing history, cookies, session tokens, and saved credentials from 
web browsers.

Cryptocurrency wallets: Attempting to exfiltrate private keys and seed phrases from developer 
machines.

SSH keys and API tokens: Gaining unauthorized access to version control systems, cloud 
platforms, and other critical infrastructure.

Supply Chain Blending: A particularly concerning trend is the blending of traditional supply chain 
compromise with advanced social engineering tactics. A notable phishing campaign in 2025 
exemplified this: malicious NPM packages were deployed alongside encrypted payloads and scripts 
hosted on Content Delivery Networks (CDNs). This multi-faceted attack aimed to steal Microsoft 
O365 credentials, targeting employees with convincing phishing lures that appeared to originate 
from legitimate sources.

These incidents highlight that attackers are becoming increasingly adept at creating convincing facades 
and leveraging multiple attack vectors. The risk is no longer confined to just open-source vulnerabilities; 
it extends to deliberately crafted malicious code that exploits trust in the developer ecosystem.

https://gamma.app/?utm_source=made-with-gamma


The Scale and Impact: Why This 
Matters to Your Organization
The proliferation of malicious NPM packages is not an isolated phenomenon; it's part of a broader, 
escalating trend in software supply chain attacks that poses a severe threat to organizations of all sizes. 
The impact of such breaches can be devastating, far exceeding the initial compromise of a single 
development machine.

3x

Increase in software supply chain attacks since 
2021 (Gartner)

45%

Organizations affected globally by software supply 
chain attacks

As Gartner reports, there has been a threefold increase in software supply chain attacks since 2021, with 
a staggering 45% of organizations globally having already been affected. This exponential growth 
underscores the urgent need for organizations to prioritize software supply chain security.

The ripple effect of a compromised NPM package can be extensive:

Data Breaches: Malicious packages can exfiltrate sensitive data, including customer data, 
proprietary algorithms, financial records, and intellectual property. This leads to severe financial 
penalties, reputational damage, and loss of customer trust.

Credential Leaks: Compromised developer machines or CI/CD pipelines can lead to the leakage of 
critical credentials (e.g., API keys, cloud access tokens, production database passwords), enabling 
attackers to pivot deeper into an organization's infrastructure.

Intellectual Property (IP) Theft: Source code, trade secrets, and other proprietary information can 
be stolen, directly impacting a company's competitive advantage.

Operational Disruption: Malicious code can disrupt development pipelines, deploy ransomware, or 
even sabotage critical applications, leading to costly downtime and recovery efforts.

System Configurations Exposure: Detailed information about your servers, networks, and internal 
systems can be leaked, providing attackers with valuable reconnaissance for future, more targeted 
attacks.

The npm ecosystem's ubiquity means that a single compromised package has the potential to cascade 
risks across thousands, if not millions, of dependent projects worldwide. A prime example is the 2018 
"event-stream" compromise, where a malicious dependency was injected into a popular package that 
was downloaded over 8 million times in under three months. This incident demonstrated how quickly a 
supply chain attack can spread and the immense difficulty in identifying all affected parties.

https://gamma.app/?utm_source=made-with-gamma


How to Detect and Mitigate 
Malicious NPM Packages
Protecting your codebase requires a multi-layered approach, combining proactive measures with robust 
detection capabilities. Here9s how your organization can detect and mitigate the risks posed by 
malicious NPM packages:

01

Regular Dependency 
Auditing
Make dependency auditing a 
routine practice. Focus on recent 
additions to your 
`package.json` and `package-
lock.json` files. Pay close 
attention to packages with 
sudden changes in maintainers, 
unusual version bumps, or those 
with low download counts that 
suddenly become a dependency.

02

Network Log 
Monitoring
Implement robust network 
monitoring to detect suspicious 
outbound connections from 
your build servers, developer 
machines, or production 
environments. Look for 
connections to unknown or 
unusual IP addresses, domains 
associated with known 
malicious activity, or 
communication with command-
and-control (C2) servers.

03

Utilize NPM Security 
Tools
Integrate and regularly use built-

in NPM security tools. The npm 
audit command is crucial for 
identifying known vulnerabilities 
in your dependencies. 
Additionally, enforce the use of 

lockfiles (npm ci or yarn install 
--frozen-lockfile) in your CI/CD 
pipelines to ensure deterministic 
installs and prevent unforeseen 
dependency changes.

04

Software Composition Analysis 
(SCA) Tools
Employ dedicated Software Composition Analysis 
(SCA) tools. These solutions automate the process 
of identifying open-source components in your 
codebase, detecting known vulnerabilities, and 
maintaining a Software Bill of Materials (SBOM). 
An SBOM provides a complete, accurate inventory 
of all components, enabling rapid response to new 
threats.

05

Runtime Application Self-
Protection (RASP)
Consider integrating Runtime Application Self-
Protection (RASP) into your applications. RASP 
solutions monitor applications in real-time, 
detecting and blocking attacks by analyzing 
application behavior, including attempts by 
malicious code within dependencies to perform 
unauthorized actions.

By combining these technical controls, organizations can significantly enhance their ability to detect, 
prevent, and respond to malicious NPM packages, reducing their overall supply chain risk.

https://gamma.app/?utm_source=made-with-gamma


Best Practices for Secure NPM 
Usage
Beyond detection and mitigation, fostering a proactive security posture is paramount. Implementing 
the following best practices for secure NPM usage will significantly reduce your exposure to malicious 
packages:

1. Minimize Published Secrets

What to do: Always configure your .npmignore 

file and the files property in your package.json 
to explicitly exclude sensitive information like 
API keys, environment variables, test data, and 
configuration files from being published to the 
NPM registry.

Why it matters: Accidental publication of 
secrets can immediately compromise your 
infrastructure or data, providing attackers with 
direct access.

2. Control Install Scripts

What to do: Be cautious with packages that 
utilize install or post-install scripts, especially if 
their functionality seems unrelated to the 
package's primary purpose. If possible, disable 

these scripts during installation (npm install --
ignore-scripts) for untrusted dependencies, or 
review them thoroughly before execution.

Why it matters: Install scripts are a primary 
vector for malicious execution. Limiting their 
power reduces the immediate threat.

3. Verify Package Authenticity

What to do: Before integrating a new package, 
perform due diligence. Check the package's 
maintainers, their reputation, recent activity, 
and community discussions. Look at download 
counts and stars as a rough indicator of 
popularity and trust, but be aware of 
manipulation. Cross-reference with official 
documentation and source code repositories 
(e.g., GitHub).

Why it matters: Verifying authenticity helps 
differentiate legitimate packages from 
typosquats or abandoned projects that have 
been compromised.

4. Stay Informed

What to do: Regularly monitor security 
advisories from NPM, your SCA tool vendors, and 
reputable cybersecurity news outlets. Subscribe 
to mailing lists or RSS feeds from organizations 
like Snyk, Sonatype, and the OpenSSF. 
Participate in relevant community channels and 
forums.

Why it matters: The threat landscape evolves 
rapidly. Staying informed enables timely 
response to newly discovered vulnerabilities or 
attack campaigns.

b dd h d l kfl b ld d f

https://gamma.app/?utm_source=made-with-gamma


The Human Element: Developer 
Awareness and Organizational 
Culture
While technical controls are indispensable, no security strategy is complete without addressing the 
human element. Attackers increasingly recognize that developers are the direct gateway into an 
organization's software supply chain. They are therefore becoming prime targets for sophisticated 
phishing and social engineering attacks designed to trick them into introducing malicious packages or 
compromising their credentials.

Key aspects of strengthening the human element include:

Training and Awareness Programs:

Regular, mandatory training sessions for all developers on common attack vectors, such as 
typosquatting, dependency confusion, and phishing scams.

Education on how to identify suspicious package names, unusual behavior during installation, 
or requests for elevated permissions.

Teaching developers to scrutinize package details (maintainer history, repository, recent 
changes) before adoption.

Fostering a Security-First Mindset:

Integrate security into every phase of the Software Development Lifecycle (SDLC), from design 
to deployment.

Empower developers to question and report anything that seems anomalous without fear of 
reprimand.

Recognize and reward proactive security contributions, reinforcing its importance.

Collaboration Between Security and Development Teams:

Break down silos between security and development. Security teams should act as enablers and 
educators, not just gatekeepers.

Establish clear communication channels for reporting potential incidents and sharing threat 
intelligence.

Conduct joint training sessions and threat modeling exercises to build shared understanding 
and empathy.

Secure Development Environments:

Ensure developer workstations and CI/CD environments are hardened, regularly patched, and 
monitored.

Enforce least privilege principles for developer accounts and build processes.

https://gamma.app/?utm_source=made-with-gamma


Conclusion: Securing Your Codebase 
in an Evolving Threat Landscape

The landscape of software development is constantly evolving, and with it, the 
sophistication of cyber threats. Malicious NPM packages represent a clear and 

present danger, capable of undermining trust, compromising data, and disrupting 
operations across the global software supply chain.

Protecting your organization is not merely about implementing a single tool or 
adhering to a checklist; it requires a holistic and dynamic approach. Vigilance, 

combined with robust technical controls, and continuous developer education, is 
not just recommended, but absolutely essential to safeguard your projects and 

maintain the integrity of your codebase.

By adopting proactive security measures, embracing automation through tools like 
SCA, and fostering a pervasive culture of security across all teams, organizations 
can significantly reduce their risk exposure. This proactive stance enables faster 

threat detection, more effective response, and ultimately, preserves trust in your 
products and processes.

The question remains, and it9s one that every organization must confront: How 
safe is your codebase today? The answer depends entirely on your commitment 

to continuous security improvement.

https://gamma.app/?utm_source=made-with-gamma

