
The Forgotten Programming Languages That Still 
Influence Modern Code
Explore the enduring legacy of foundational programming languages that quietly shape today's software landscape.

https://gamma.app/?utm_source=made-with-gamma


Introduction: Why Look Back 
at Forgotten Languages?

Many early programming languages are considered obsolete but 
quietly shape today9s software.

Understanding their legacy reveals the roots of modern programming 
concepts and practices.

Delve into the foundational principles that continue to resonate in 
contemporary programming paradigms.

https://gamma.app/?utm_source=made-with-gamma


Historical Background: The Dawn of High-Level Programming

The 1950s and 60s marked a pivotal era, giving birth to languages designed to simplify complex machine code.

1

Simplifying Code
Pioneers like Fortran, ALGOL, and COBOL emerged, 

transforming how we interacted with computers.

2

Foundational Ideas
These languages introduced core concepts: structured 

programming, data abstraction, and business logic 
automation.

3

A New Era
They laid the groundwork for all subsequent high-level 

programming, enabling more complex applications.

https://gamma.app/?utm_source=made-with-gamma


ALGOL: The Grandfather of Modern 
Syntax
Developed in the late 1950s, ALGOL revolutionized programming with its 
innovative features:

Introduced block structure and lexical scoping, allowing for organized 
and reusable code blocks.

Significantly influenced the syntax and control structures of languages 
like C, Pascal, and Java.

Its formal grammar, Backus-Naur Form (BNF), became the standard for 
language specification worldwide.

https://gamma.app/?utm_source=made-with-gamma


Smalltalk: The Birthplace of Object-Oriented Programming

Smalltalk, created in the 1970s at Xerox PARC by Alan Kay and his team, laid the foundation for modern OOP.

Objects & Classes
Pioneered the core concepts of 
objects and classes as fundamental 
building blocks.

Inheritance
Introduced inheritance, 
enabling code reuse and 
hierarchical relationships 
between entities.

Message Passing
Innovated with message passing, a 
dynamic way for objects to 
communicate and interact.

Its influence is undeniable, directly inspiring languages like Ruby and Python, and shaping Java and C#.

https://gamma.app/?utm_source=made-with-gamma


COBOL: The Business Backbone
Designed in 1959 by a DoD committee led by Grace Hopper, COBOL was 
specifically built for business data processing.

Introduced robust record data structures, crucial for managing large 
datasets.

Featured a highly readable, English-like syntax that made it accessible 
to non-programmers.

Remarkably, COBOL still runs critical banking, insurance, and 
government systems globally, underpinning vital infrastructure.

https://gamma.app/?utm_source=made-with-gamma


Lisp: The Functional Programming Pioneer

Invented in 1958 by John McCarthy for AI research, Lisp introduced concepts that were revolutionary at the time.

Recursion: A powerful technique for solving problems by 
breaking them into smaller, similar sub-problems.

Symbolic Computation: Enabled manipulation of abstract 
symbols, critical for AI and complex data processing.

Code-as-Data (Homoiconicity): Allowed programs to 
manipulate their own code, leading to highly flexible and 
powerful metaprogramming.

Lisp's ideas profoundly influence modern functional languages like Haskell and Clojure, and even scripting languages like 
JavaScript.

https://gamma.app/?utm_source=made-with-gamma


Ada: Safety and Reliability for Critical Systems
Developed in the 1980s for the US Department of Defense, Ada was engineered for precision and robustness.

Strong Typing
Emphasized rigorous type checking 
to prevent common programming 
errors and enhance safety.

Modularity
Promoted modular design, making 
large-scale systems easier to build, 
maintain, and verify.

Real-Time Support
Provided advanced features for 
real-time system development, 
crucial for time-sensitive 
operations.

Ada remains vital in aerospace, defense, and transportation, where system failure is not an option.

https://gamma.app/?utm_source=made-with-gamma


Lasting Influence & Modern Examples

The echoes of these forgotten languages resonate strongly in today's software landscape:

ALGOL9s syntax lineage is clearly visible in the structure of C, Java, and JavaScript.

Smalltalk9s OOP concepts form the very foundation of Ruby and Python's object models.

COBOL continues to power countless legacy financial systems, with billions of lines still in active use.

Lisp9s functional ideas are integral to modern AI development and influence contemporary scripting languages.

Ada ensures safety and reliability in critical infrastructure software, from avionics to railway control systems.

https://gamma.app/?utm_source=made-with-gamma


Conclusion: The Enduring Legacy of Forgotten Languages

Far from being truly "forgotten," these pioneering languages laid the essential groundwork for modern programming paradigms.

Foundation for Modernity
Their core concepts continue to drive innovation, 
stability, and efficiency in today9s software 
development.

Enriched Understanding
Appreciating their rich history deepens our 
understanding and mastery of current programming 
practices and future trends.

https://gamma.app/?utm_source=made-with-gamma

